Equivalent Resistance and Capacitance

ResistorsCapacitors
SeriesIncreasesDecreases
ParallelDecreasesIncreases

Resistors in series increase the total equivalent resistance of the circuit:

R_{Tseries} = R_1+R_2+R_3+...+R_N

Resistors in parallel decrease the total equivalent resistance of the circuit:

R_{Tparallel} = \frac{1}{(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}+...+\frac{1}{R_N})} = (\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}+...+\frac{1}{R_N})^{-1}

Capacitors in series decrease the total equivalent resistance of the circuit:

C_{Tseries} = \frac{1}{(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}+...+\frac{1}{C_N})} = (\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}+...+\frac{1}{C_N})^{-1}

Capacitors in parallel increase the total equivalent resistance of the circuit:

C_{Tseries} = C_1+C_2+C_3+...+C_N